# Fundamental tools
# Author: Stefano Riva, PhD Student, NRG, Politecnico di Milano
# Latest Code Update: 30 August 2023
# Latest Doc Update: 25 June 2023
from importlib import metadata
import numpy as np
import time
import warnings
# import dolfinx
from dolfinx.fem import (Function, FunctionSpace, assemble_scalar, assemble_vector, form, Expression)
from ufl import grad, inner, dx, Measure
from ufl.domain import extract_unique_domain
# Note that dx will be deprecated in the future, is it necessary to import the mesh in addition to V?
# Class to make progress bar
[docs]
class LoopProgress():
r"""
A class to make progress bar.
Parameters
----------
msg : str
Message to be displayed
final : float, optional (Default = 100)
Maximum value for the iterations
"""
def __init__(self, msg: str, final: float = 100):
self.msg = msg
self.final = final
self.instant = 0.
self.init_time = time.time()
self.comp_times = list()
out = self.msg+': '
print (out, end="\r")
[docs]
def update(self, step: float, percentage: bool = False):
r"""
Update message to display and clears the previous one.
Parameters
----------
step : float
Interger or float value to add at the counter.
percentage : boolean, optional (Default = False)
Indicates if the bar should be displayed in %.
"""
# Compute average computational time
self.comp_times.append(time.time() - self.init_time)
average_time = sum(self.comp_times) / len(self.comp_times)
# Update instant
self.instant += step
# Write the message
if percentage:
printed_inst = '{:.3f}'.format(self.instant / self.final * 100)+' / 100.00%'
else:
printed_inst = '{:.3f}'.format(self.instant)+' / {:.2f}'.format(self.final)
out = self.msg+': '+printed_inst + ' - {:.3f}'.format(average_time)+' s/it'
# Print output
if np.isclose(self.instant, self.final):
print (out)
else:
print (out, end="\r")
# Update inital offset cpu time
self.init_time = time.time()
# Class to compute norms in L2, H1 and L^\infty and the inner product in L2
[docs]
class norms():
r"""
A class to compute norms and inner products. :math:`L^2` and :math:`H^1` (semi and full are implemented for both scalar and vector fields), whereas the average and the integral are available for scalar only.
Parameters
----------
V : FunctionSpace
Functional Space onto which the Function are defined.
is_H1 : boolean, optional (Default = False)
If the function belongs to :math:`H^1`, the forms for the inner products and norms are computed.
"""
def __init__(self, V: FunctionSpace, is_H1 = False, metadata_degree=4):
self.V = V
self.u1 = Function(V).copy()
self.u2 = Function(V).copy()
# Deprecation warning in fenics-dolfinx=0.6.0 --> try to correct this?
warnings.filterwarnings("ignore", category=DeprecationWarning)
metadata = {"quadrature_degree": metadata_degree}
self.dx = Measure("dx", domain=extract_unique_domain(self.u1), metadata=metadata)
if V.num_sub_spaces == 0: # if the functional space is related to a scalar function
self.integ_form = form(self.u1 * self.dx)
self.L2form_inner = form(inner(self.u1, self.u2) * self.dx)
if is_H1:
self.semiH1form_inner = form(inner(grad(self.u1), grad(self.u2)) * self.dx)
self.fullH1form_inner = form( (inner(grad(self.u1), grad(self.u2)) + inner(self.u1, self.u2)) * self.dx)
[docs]
def integral(self, u: Function):
r"""
Computes the integral of a given scalar function `u` over the domain
.. math::
\int_\Omega u \,d\Omega
Parameters
----------
u : Function
Function belonging to the same functional space V (it must be a scalar!)
Returns
-------
val : float
Integral over the domain
"""
if not isinstance(u, Function):
if isinstance(u, np.ndarray) and ( self.u1.x.array.shape == u.shape ):
self.u1.x.array[:] = u
else:
tmp = Function(self.V).copy()
tmp.interpolate(Expression(u, self.V.element.interpolation_points()))
warnings.warn("Input u is not a function: it may slower the calculations")
self.u1.x.array[:] = tmp.x.array[:]
else:
self.u1.x.array[:] = u.x.array[:]
val = assemble_scalar(self.integ_form)
return val
[docs]
def average(self, u: Function):
r"""
Computes the integral average of a given **scalar** function `u` over the domain
.. math::
\langle u \rangle = \frac{1}{|\Omega|}\int_\Omega u \,d\Omega
Parameters
----------
u : Function
Function belonging to the same functional space V (it must be a scalar!)
Returns
-------
ave_value : float
Average over the domain
"""
value = self.integral(u)
dom_fun = Function(self.V).copy()
dom_fun.x.set(1.0)
domain_norm = self.integral(dom_fun)
ave_value = value / domain_norm
return ave_value
[docs]
def L2norm(self, u: Function):
r"""
Computes the :math:`L^2` norm of the function `u` over the domain
.. math::
\| u\|_{L^2} = \sqrt{\int_\Omega u \cdot u\,d\Omega}
Parameters
----------
u : Function
Function belonging to the same functional space `V`
Returns
-------
value : float
:math:`L^2` norm of the function
"""
if not isinstance(u, Function):
if isinstance(u, np.ndarray) and ( self.u1.x.array.shape == u.shape ):
self.u1.x.array[:] = u
self.u2.x.array[:] = u
else:
tmp = Function(self.V).copy()
tmp.interpolate(Expression(u, self.V.element.interpolation_points()))
warnings.warn("Input u is not a function: it may slower the calculations")
self.u1.x.array[:] = tmp.x.array[:]
self.u2.x.array[:] = tmp.x.array[:]
else:
self.u1.x.array[:] = u.x.array[:]
self.u2.x.array[:] = u.x.array[:]
value = np.sqrt(assemble_scalar(self.L2form_inner))
return value
[docs]
def H1norm(self, u: Function, semi = True):
r"""
Computes the :math:`H^1` semi or full norm of the function `u` over the domain
.. math::
| u |_{H^1} = \sqrt{\int_\Omega \nabla u \cdot \nabla u\,d\Omega}
.. math::
\| u \|_{H^1} = \sqrt{\int_\Omega \nabla u \cdot \nabla u\,d\Omega + \int_\Omega u \cdot u\,d\Omega}
Parameters
----------
u : Function
Function belonging to the same functional space `V`
semi : boolean, optional (Default = True)
Indicates if the semi norm must be computed.
Returns
-------
value : float
:math:`H^1` norm of the function
"""
if not isinstance(u, Function):
if isinstance(u, np.ndarray) and ( self.u1.x.array.shape == u.shape ):
self.u1.x.array[:] = u
self.u2.x.array[:] = u
else:
tmp = Function(self.V).copy()
tmp.interpolate(Expression(u, self.V.element.interpolation_points()))
warnings.warn("Input u is not a function: it may slower the calculations")
self.u1.x.array[:] = tmp.x.array[:]
self.u2.x.array[:] = tmp.x.array[:]
else:
self.u1.x.array[:] = u.x.array[:]
self.u2.x.array[:] = u.x.array[:]
if semi == True:
value = np.sqrt(assemble_scalar(self.semiH1form_inner))
else:
value = np.sqrt(assemble_scalar(self.fullH1form_inner))
return value
[docs]
def Linftynorm(self, u: Function):
r"""
Computes the :math:`L^\infty` norm of a given function `u` over the domain
.. math::
\| u \|_{L^\infty}=\max\limits_\Omega |u|
Parameters
----------
u : Function
Function belonging to the same functional space `V`
Returns
-------
value : float
:math:`L^\infty` norm of the function
"""
if not isinstance(u, Function):
if isinstance(u, np.ndarray) and ( self.u1.x.array.shape == u.shape ):
return np.max(np.abs(u))
else:
tmp = Function(self.V).copy()
tmp.interpolate(Expression(u, self.V.element.interpolation_points()))
warnings.warn("Input u is not a function: it may slower the calculations")
value = np.max(np.abs(tmp.x.array))
else:
value = np.max(np.abs(u.x.array))
return value
[docs]
def L2innerProd(self, u: Function, v: Function):
r"""
Computes the :math:`L^2` inner product of the functions `u` and `v` over the domain
.. math::
(u,v)_{L^2}=\int_\Omega u\cdot v \,d\Omega
Parameters
----------
u : Function
Function belonging to the same functional space `V`
v : Function
Function belonging to the same functional space `V`
Returns
-------
value : float
:math:`L^2` inner product between the functions
"""
if not isinstance(u, Function):
if isinstance(u, np.ndarray) and ( self.u1.x.array.shape == u.shape ):
self.u1.x.array[:] = u
else:
tmp = Function(self.V).copy()
tmp.interpolate(Expression(u, self.V.element.interpolation_points()))
warnings.warn("Input u is not a function: it may slower the calculations")
self.u1.x.array[:] = tmp.x.array[:]
else:
self.u1.x.array[:] = u.x.array[:]
if not isinstance(v, Function):
if isinstance(v, np.ndarray) and ( self.u2.x.array.shape == v.shape ):
self.u2.x.array[:] = v
else:
tmp = Function(self.V).copy()
tmp.interpolate(Expression(v, self.V.element.interpolation_points()))
warnings.warn("Input u is not a function: it may slower the calculations")
self.u2.x.array[:] = tmp.x.array[:]
else:
self.u2.x.array[:] = v.x.array[:]
value = assemble_scalar(self.L2form_inner)
return value
[docs]
def H1innerProd(self, u: Function, v: Function, semi = True):
r"""
Computes the :math:`H^1` semi or full inner product of the functions `u` and `v` over the domain
.. math::
\langle u, v \,\rangle_{H^1} = \int_\Omega \nabla u \cdot \nabla v\,d\Omega
.. math::
(u,v)_{H^1} = \int_\Omega u\cdot v \,d\Omega + \int_\Omega \nabla u\cdot \nabla v \,d\Omega
Parameters
----------
u : Function
Function belonging to the same functional space `V`
v : Function
Function belonging to the same functional space `V`
semi : boolean, optional (Default = True)
Indicates if the semi norm must be computed.
Returns
-------
value : float
:math:`H^1` inner product of the functions
"""
if not isinstance(u, Function):
if isinstance(u, np.ndarray) and ( self.u1.x.array.shape == u.shape ):
self.u1.x.array[:] = u
else:
tmp = Function(self.V).copy()
tmp.interpolate(Expression(u, self.V.element.interpolation_points()))
warnings.warn("Input u is not a function: it may slower the calculations")
self.u1.x.array[:] = tmp.x.array[:]
else:
self.u1.x.array[:] = u.x.array[:]
if not isinstance(v, Function):
if isinstance(v, np.ndarray) and ( self.u2.x.array.shape == v.shape ):
self.u2.x.array[:] = v
else:
tmp = Function(self.V).copy()
tmp.interpolate(Expression(v, self.V.element.interpolation_points()))
warnings.warn("Input u is not a function: it may slower the calculations")
self.u2.x.array[:] = tmp.x.array[:]
else:
self.u2.x.array[:] = v.x.array[:]
if semi == True:
value = assemble_scalar(self.semiH1form_inner)
else:
value = assemble_scalar(self.fullH1form_inner)
return value
# class compute_integral():
# def __init__(self, domain, V):
# self.domain = domain
# self.V = V
# v = TestFunction(V)
# cell_area_form = form(v*dx)
# self.cell_area = assemble_vector(cell_area_form).array
# self.h = dolfinx.cpp.mesh.h(domain, 2, range(len(domain.geometry.x)))
# def integral(self,u):
# output = sum(u.x.array[:] * self.cell_area)
# return output
# def L2norm(self,u):
# output = np.sqrt(sum(u.x.array[:]**2 * self.cell_area))
# return output