Online
Contents
Online#
Online phase of the Generalised Empirical Interpolation Method Vectorial Treatment applied to the vector field \((T,\mathbf{u},p_{rgh})\) using temperature sensors only.
Preparation#
The structure of the case study folder is the following
>> ./Study_case
>> /Folder_1
>> /Folder_2
>> /Folder_3
>> /Folder_4
>> /GEIM-VT_s_0.0001
>> /0
>> /constant
>> /GEIM-VT_Offline_files
>> /system
controlDict
blockMeshDict
...
GEIM-VTsolverDict <--- Dictionary needed for the input parameters
The GEIM-VTsolverDict must be put inside ./Study_case/GEIM-VT_s_(SensorsVariance)/system/
An example of GEIM-VTsolverDict can be found in application/GEIM-VT/GEIM-VT_Online, which requires the following entries:
Online_parameters
{
msNumber 20; <---- number of GEIM magic sensors to use
foldersList (
"Folder_3"
"Folder_4" ); <---- List of folder names containig the snapshots to be reconstructed
}
Usage#
Inside ./Study_case/GEIM-VT_s_(SensorsVariance) launch
GEIM-VT_Online
To include folder “0” use
GEIM-VT_Online -withZero
Results#
The interpolant and the residual field, defined as
\[r_M = \left| \phi-\mathcal{I}_M[\phi]\,\right|\]
are stored in the correspondent snapshot folders.
>> ./Study_case
>> /Folder_1
>> /Folder_2
>> /Folder_3
>> /0
TGEIM-VTInterpolant <--- T GEIM-VT interpolant obtained with msNumber basis
TGEIM-VTresidual <--- T GEIM-VT residual obtained with msNumber basis
p_rghGEIM-VTInterpolant <--- p_rgh GEIM-VT interpolant obtained with msNumber basis
p_grhGEIM-VTresidual <--- p_rgh GEIM-VT residual obtained with msNumber basis
UGEIM-VTInterpolant <--- U GEIM-VT interpolant obtained with msNumber basis
UGEIM-VTresidual <--- U GEIM-VT residual obtained with msNumber basis
>> /1
TGEIM-VTInterpolant
TGEIM-VTresidual
p_rghGEIM-VTInterpolant
p_grhGEIM-VTresidual
UGEIM-VTInterpolant
UGEIM-VTresidual
>> /...
>> /Folder_4
>> /0
TGEIM-VTInterpolant
TGEIM-VTresidual
...
>> /constant
>> /system
>> /GEIM-VT_s_0.0001
>> /0
>> /constant
>> /system
>> /GEIM-VT_Offline_files
>> /GEIM-VT_Online_files
T_maximum_L2_relative_error.txt
T_average_L2_relative_error.txt
p_rgh_maximum_L2_relative_error.txt
p_rgh_average_L2_relative_error.txt
U_maximum_L2_relative_error.txt
U_average_L2_relative_error.txt
The absolute and relative error are computed as
\[\epsilon_M = \frac{|| \phi-\mathcal{I}_M[\phi]||_{L^\infty}}{||\phi||_{L^2}}\qquad \qquad {\phi\in\{T, \mathbf{u}, p_{rgh}\}}\]