Bibliography
Bibliography#
J. P. Argaud, B. Bouriquet, H. Gong, Y. Maday, and O. Mula. Stabilization of (G)EIM in Presence of Measurement Noise: Application to Nuclear Reactor Physics. In Marco L. Bittencourt, Ney A. Dumont, and Jan S. Hesthaven, editors, Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016, 133–145. Cham, 2017. Springer International Publishing. doi:10.48550/arXiv.1611.02219.
Maxime Barrault, Yvon Maday, Ngoc Cuong Nguyen, and Anthony T. Patera. An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathematique, 339(9):667–672, 2004. URL: https://www.sciencedirect.com/science/article/pii/S1631073X04004248, doi:https://doi.org/10.1016/j.crma.2004.08.006.
G Berkooz, P Holmes, and J L Lumley. The proper orthogonal decomposition in the analysis of turbulent flows. Annual Review of Fluid Mechanics, 25(1):539–575, jan 1993. doi:10.1146/annurev.fl.25.010193.002543.
Steven L Brunton and J Nathan Kutz. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, USA, 1st edition, 2019. ISBN 1108422098. URL: http://www.databookuw.com.
D. Degen, K. Veroy, and F. Wellmann. How Uncertainty Quantification and Reduced Order Modeling Change our Model Understanding. In AGU Fall Meeting Abstracts, volume 2020, T015–0002. December 2020. URL: https://ui.adsabs.harvard.edu/abs/2020AGUFMT015.0002D.
Denise Degen, Karen Veroy, and Florian Wellmann. Certified reduced basis method in geosciences. Computational Geosciences, 24:1–19, 02 2020. doi:10.1007/s10596-019-09916-6.
Denise Degen, Karen Veroy, and Florian Wellmann. Uncertainty quantification for basin-scale geothermal conduction models. Scientific Reports, 12:, 03 2022. doi:10.1038/s41598-022-08017-2.
Theron Guo, Ondřej Rokoš, and Karen Veroy. Learning constitutive models from microstructural simulations via a non-intrusive reduced basis method. Computer Methods in Applied Mechanics and Engineering, 384:113924, 2021. doi:https://doi.org/10.1016/j.cma.2021.113924.
Willy Haik, Yvon Maday, and Ludovic Chamoin. A real-time variational data assimilation method with data-driven model enrichment for time-dependent problems. Computer Methods in Applied Mechanics and Engineering, 405:115868, 2023. URL: https://www.sciencedirect.com/science/article/pii/S0045782522008246, doi:https://doi.org/10.1016/j.cma.2022.115868.
Jan S Hesthaven, Gianluigi Rozza, and Benjamin Stamm. Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer International Publishing, 2016. doi:10.1007/978-3-319-22470-1.
Carolina Introini. Advanced modelling and stability analysis for nuclear reactors. PhD thesis, Politecnico di Milano, 2021.
Carolina Introini, Simone Cavalleri, Stefano Lorenzi, Stefano Riva, and Antonio Cammi. Stabilization of generalized empirical interpolation method (geim) in presence of noise: a novel approach based on tikhonov regularization. Computer Methods in Applied Mechanics and Engineering, 404:115773, 2023. URL: https://www.sciencedirect.com/science/article/pii/S0045782522007290, doi:https://doi.org/10.1016/j.cma.2022.115773.
Carolina Introini, Stefano Riva, Stefano Lorenzi, Simone Cavalleri, and Antonio Cammi. Non-intrusive system state reconstruction from indirect measurements: A novel approach based on Hybrid Data Assimilation methods. Annals of Nuclear Energy, 182:109538, 2023. URL: https://www.sciencedirect.com/science/article/pii/S0306454922005680, doi:https://doi.org/10.1016/j.anucene.2022.109538.
Y. Maday, O. Mula, A. T. Patera, and M. Yano. The Generalized Empirical Interpolation Method: Stability theory on Hilbert spaces with an application to the Stokes equation. Computer Methods in Applied Mechanics and Engineering, 287:310–334, 2015. doi:10.1016/j.cma.2015.01.018.
Yvon Maday. Reduced basis method for the rapid and reliable solution of partial differential equations. November 2006. Preprint. URL: https://hal.archives-ouvertes.fr/hal-00112152.
Yvon Maday and Olga Mula. A Generalized Empirical Interpolation Method: Application of Reduced Basis Techniques to Data Assimilation, pages 221–235. Springer Milan, Milano, 2013. URL: https://doi.org/10.1007/978-88-470-2592-9_13, doi:10.1007/978-88-470-2592-9_13.
Yvon Maday, Anthony Patera, James Penn, and Masayuki Yano. A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics. International Journal for Numerical Methods in Engineering, 2014. doi:10.1002/nme.4747.
Yvon Maday and Anthony T Patera. 4 Reduced basis methods. In Peter Benner, Stefano Grivet-Talocia, Alfio Quarteroni, Gianluigi Rozza, Wil Schilders, and Luís Miguel Silveira, editors, Volume 2 Snapshot-Based Methods and Algorithms, pages 139–180. De Gruyter, 2020. doi:doi:10.1515/9783110671490-004.
Alfio Quarteroni, Andrea Manzoni, and Federico Negri. Reduced Basis Methods for Partial Differential Equations. Springer International Publishing, 2016. doi:10.1007/978-3-319-15431-2.
Alfio Quarteroni and Gianluigi Rozza. Reduced Order Methods for Modeling and Computational Reduction. Springer International Publishing, 2014. doi:10.1007/978-3-319-02090-7.
Stefano Riva, Carolina Introini, Stefano Lorenzi, and Antonio Cammi. Hybrid data assimilation methods, Part I: Numerical comparison between GEIM and PBDW. Annals of Nuclear Energy, 190:109864, 2023. URL: https://www.sciencedirect.com/science/article/pii/S0306454923001834, doi:https://doi.org/10.1016/j.anucene.2023.109864.
Gianluigi Rozza, Martin Hess, Giovanni Stabile, Marco Tezzele, Francesco Ballarin, Carmen Grassle, Michael Hinze, Stefan Volkwein, Francisco Chinesta, Pierre Ladeveze, Yvon Maday, Anthony Patera, and J. Farhat, Char. Model Order Reduction: Volume 2: Snapshot-Based Methods and Algorithms. De Gruyter, 2020. ISBN 9783110671490. URL: https://doi.org/10.1515/9783110671490, doi:doi:10.1515/9783110671490.
Kajal Chandra Saha. Double lid driven cavity with different moving wall directions for low reynolds number flow. International Journal of Applied Mathematics and Theoretical Physics, 4(3):67, 2018. doi:10.11648/j.ijamtp.20180403.11.
Francesco A. B. Silva, Stefano Lorenzi, and Antonio Cammi. An empirical interpolation method for two-dimensional vector fields and vector measurements. International Journal for Numerical Methods in Engineering, 122(15):3733–3748, 2021. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6679, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6679, doi:https://doi.org/10.1002/nme.6679.
Tommaso Taddei. Model order reduction methods for data assimilation; state estimation and structural health monitoring. PhD thesis, Massachusetts Institute of Technology, 2016. doi:10.13140/RG.2.2.16001.45928.