Flow over cylinder (2D)

Contents

Flow over cylinder (2D)#

This notebook implements the ISF algorithm to simulate inviscid fluids, governed by the incompressible Euler equations in a flow over cylinder case. The mesh is generated using the gmsh library for Python and the ISF differential problems are solved using FEniCSx, a Finite Element library.

The geometry is saved into a .geo file which is loaded and meshed using the gmsh package in Python.

[1]:
import numpy as np
from dolfinx.io.gmshio import model_to_mesh
from mpi4py import MPI
from dolfinx.io import XDMFFile
from dolfinx import mesh

import gmsh

mesh_comm = MPI.COMM_WORLD
model_rank = 0
mesh_factor = 0.5

# Initialize the gmsh module
gmsh.initialize()

# Load the .geo file
gmsh.merge('mesh/cyl_dfg2D.geo')
gmsh.model.geo.synchronize()

# Set algorithm (adaptive = 1, Frontal-Delaunay = 6)
gmsh.option.setNumber("Mesh.Algorithm", 6)
gmsh.option.setNumber("Mesh.MeshSizeFactor", mesh_factor)
gdim = 2

# Linear Finite Element
gmsh.model.mesh.generate(gdim)
gmsh.model.mesh.optimize("Netgen")
Info    : Reading 'mesh/cyl_dfg2D.geo'...
Info    : Done reading 'mesh/cyl_dfg2D.geo'
Info    : Meshing 1D...
Info    : [  0%] Meshing curve 1 (Circle)
Info    : [ 20%] Meshing curve 2 (Circle)
Info    : [ 30%] Meshing curve 3 (Circle)
Info    : [ 40%] Meshing curve 4 (Circle)
Info    : [ 50%] Meshing curve 5 (Line)
Info    : [ 70%] Meshing curve 6 (Line)
Info    : [ 80%] Meshing curve 7 (Line)
Info    : [ 90%] Meshing curve 8 (Line)
Info    : Done meshing 1D (Wall 0.00224929s, CPU 0.009821s)
Info    : Meshing 2D...
Info    : Meshing surface 11 (Plane, Frontal-Delaunay)
Info    : Done meshing 2D (Wall 0.410715s, CPU 0.586401s)
Info    : 7998 nodes 16003 elements
Info    : Optimizing mesh (Netgen)...
Info    : Done optimizing mesh (Wall 3.05474e-06s, CPU 5e-06s)

The mesh is loaded into dolfinx.

[2]:
# Import into dolfinx
domain, _, ft = model_to_mesh(gmsh.model, MPI.COMM_WORLD, model_rank, gdim = gdim )

ft.name = "Facet markers"
boundary_markers = dict()
boundary_markers['inlet']  = 10
boundary_markers['outlet'] = 30
boundary_markers['walls']  = 20

domain_marker = 100

# Finalize the gmsh module
gmsh.finalize()

The ISF algorithm is based on the analogy between hydrodynamics and quantum mechinacs: in fact, it can be shown thta the Euler equations

\[\partial_t\mathbf{u}=-\left(\mathbf{u}\cdot \nabla\right)\mathbf{u} -\nabla p \qquad \text{ with } \nabla \cdot \mathbf{u} = 0\]

are equivalent to a 2-component wave function \(\Psi=[\psi_1,\psi_2]^T\in\mathbb{C}^2\), solution to Schrodinger equation

\[i\hbar \partial_t \Psi =- 0.5 \cdot \hbar^2 \Delta \Psi + p \Psi\]

and constrained to

\[\mathfrak{Re}\left\{\left(\Psi^T\right)^*i\,\Delta\Psi\right\} = 0\]

The solution algorithm is divided into three main steps, at each time iteration:

  1. Advection: through the free-particle Schrodinger

  2. Pressure projection: Poisson problem to have a divergence free velocity

  3. Phase shift

[3]:
import tqdm
import os
import numpy as np

import matplotlib.pyplot as plt
from matplotlib import rcParams
from matplotlib import cm

# If latex is not installed on your machine, comment these lines
plt.rcParams.update({
  "text.usetex": True,
  "font.family": "serif"
})

rcParams['text.latex.preamble'] = r'\usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage{mathtools}'

The steps of the algorithm are imported from the src folder.

[4]:
import sys
sys.path.append('../../.')

from src.prediction import schrodinger
from src.ISFvelocity import computeVelocity
from src.projection import poisson, phaseShift

Time Loop#

An inlet velocity \(\mathbf{u}_{in} = [1, 0]^T\) is used and the total simulation time is \(T\), using a time step \(\Delta t = 10^{-2}\).

[5]:
# Inlet velocity
u_in = np.array([1., 0., 0.])

# Time parameters
T = 5.
dt = 2e-2
num_steps = int(T/dt)

# Equivalent viscosity
hbar = 0.025

phys_parameters = {'uin': u_in,
                   'hbar': hbar}

# Degree of the polynomial for FEM - the Neumann BC at the outlet for step 2 either requires a finer mesh or degree_psi = 2
degree_psi = 1

### Assembling forms #####
print('Assembling Schrodinger predict')
step1 = schrodinger(domain, ft, boundary_marks=boundary_markers, degree_psi = degree_psi, c = np.array([.5 + 0 * 1j, .5 + 0 * 1j]))
step1.assemble(phys_parameters, dt=dt)

print('Assembling Schrodinger velocity')
ISF_vel = computeVelocity(domain, degree_psi=degree_psi)
ISF_vel.assemble(hbar)

print('Assembling Poisson')
step2 = poisson(domain, ft, boundary_marks=boundary_markers)
bc_poisson_values = {'uin': u_in, 'is_dirichlet': True, 'fully_Neumann': False}
step2.assemble(bc_poisson_values, gauss = False)

print('Assembling Schrodinger phase-shift')
step3 = phaseShift(domain, degree_psi = degree_psi)
step3.assemble(hbar)

##### Store solution #####
path = './Results/'
if not os.path.exists(path):
    os.system("mkdir "+path)
path = './Results/FlowCyl/'
if not os.path.exists(path):
    os.system("mkdir "+path)

psi1_xdmf = XDMFFile(domain.comm, path+"psi1.xdmf", "w")
psi2_xdmf = XDMFFile(domain.comm, path+"psi2.xdmf", "w")
p_xdmf = XDMFFile(domain.comm, path+"p.xdmf", "w")
u_xdmf = XDMFFile(domain.comm, path+"U.xdmf", "w")

p_xdmf.write_mesh(domain)
psi1_xdmf.write_mesh(domain)
psi2_xdmf.write_mesh(domain)
u_xdmf.write_mesh(domain)
Assembling Schrodinger predict
Assembling Schrodinger velocity
Assembling Poisson
Assembling Schrodinger phase-shift

Let us solve the transient.

[6]:
from dolfinx import common

# Sampling rate to store the data
LL = 10

steps = ["1a", "1b", "1c", "2 ", "3a", "3a"]
t_steps = list()
progress = tqdm.tqdm(desc="Advancing in time", total=num_steps)

for nn in range(num_steps):

    ## Step 1a: advection
    with common.Timer("~Step 1a"):
        # psi1_adv, psi2_adv = step1.advect(temperature=particles.Told)
        psi1_adv, psi2_adv = step1.advect(temperature=None)

    ## Step 1b: normalisation
    with common.Timer("~Step 1b"):
        PsiTilde_1 = psi1_adv.copy()
        PsiTilde_2 = psi2_adv.copy()
        norm = np.sqrt(np.conj(psi1_adv.x.array[:]) * psi1_adv.x.array[:] + np.conj(psi2_adv.x.array[:]) * psi2_adv.x.array[:])
        PsiTilde_1.x.array[:] = psi1_adv.x.array[:] / norm.real
        PsiTilde_2.x.array[:] = psi2_adv.x.array[:] / norm.real

    ## Step 1c: compute non-solenoidal velocity
    with common.Timer("~Step 1c"):
        uTilde = ISF_vel.solve(PsiTilde_1, PsiTilde_2)

    ## Step 2: pressure projection
    with common.Timer("~Step 2 "):
        pressure = step2.solve(uTilde)

    ## Step 3a: phase shift
    with common.Timer("~Step 3a"):
        Psi_1, Psi_2 = step3.solve(PsiTilde_1, PsiTilde_2, pressure)

    ## Step 3b: compute new velocity
    with common.Timer("~Step 3b"):
        u_new = ISF_vel.solve(Psi_1, Psi_2)

    if np.isclose((nn+1) % LL, 0):
        pressure.name = "p"
        Psi_1.name = "psi_1"
        Psi_2.name = "psi_2"
        u_new.name = "U"
        p_xdmf.write_function(pressure, (nn+1) * dt)
        psi1_xdmf.write_function(Psi_1, (nn+1) * dt)
        psi2_xdmf.write_function(Psi_2, (nn+1) * dt)
        u_xdmf.write_function(u_new, (nn+1) * dt)

    # Update Old
    with Psi_1.vector.localForm() as loc_, step1.psi1_old.vector.localForm() as loc_n:
        loc_.copy(loc_n)
    with Psi_2.vector.localForm() as loc_, step1.psi2_old.vector.localForm() as loc_n:
        loc_.copy(loc_n)

    t_steps.append(list())
    for step in steps:
        t_steps[nn].append(mesh_comm.gather(common.timing("~Step "+step), root=0))

    progress.update(1)

p_xdmf.close()
psi1_xdmf.close()
psi2_xdmf.close()
u_xdmf.close()
Advancing in time:   0%|          | 0/250 [00:00<?, ?it/s]Advancing in time: 100%|██████████| 250/250 [03:02<00:00,  1.30it/s]

In the end, let us print the time required by each step during the simulation

[7]:
if mesh_comm.rank == 0:
    print("Time-step breakdown")
    step_arr = np.asarray(t_steps)
    time_per_run = step_arr[:, :, 0, 1] / step_arr[:, :, 0, 0]

    for jj, step in enumerate(steps):
                print(f"Step "+step+f": Min time: {np.min(time_per_run[:, jj]):.3e}, Max time: {np.max(time_per_run[:, jj]):.3e}")
Time-step breakdown
Step 1a: Min time: 2.148e-01, Max time: 2.444e-01
Step 1b: Min time: 9.480e-04, Max time: 1.192e-03
Step 1c: Min time: 3.106e-02, Max time: 4.047e-02
Step 2 : Min time: 3.861e-01, Max time: 4.876e-01
Step 3a: Min time: 4.272e-02, Max time: 5.080e-02
Step 3a: Min time: 4.272e-02, Max time: 5.080e-02